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Abstract
Inspired by the demands of real-time climate and
weather forecasting, we develop optimistic on-
line learning algorithms that require no parame-
ter tuning and have optimal regret guarantees un-
der delayed feedback. Our algorithms—DORM,
DORM+, and AdaHedgeD—arise from a novel
reduction of delayed online learning to optimistic
online learning that reveals how optimistic hints
can mitigate the regret penalty caused by delay.
We pair this delay-as-optimism perspective with
a new analysis of optimistic learning that exposes
its robustness to hinting errors and a new meta-
algorithm for learning effective hinting strategies
in the presence of delay. We conclude by bench-
marking our algorithms on four subseasonal cli-
mate forecasting tasks, demonstrating low regret
relative to state-of-the-art forecasting models.

1. Introduction

Online learning is a sequential decision-making paradigm in
which a learner is pitted against a potentially adversarial en-
vironment (Shalev-Shwartz, 2007; Orabona, 2019). At time
t, the learner must select a playw t from some set of possible
playsW . The environment then reveals the loss function` t

and the learner pays the cost` t (w t ). The learner uses infor-
mation collected in previous rounds to improve its plays in
subsequent rounds.Optimisticonline learners additionally
make use of side-information or “hints” about expected fu-
ture losses to improve their plays. Over a period of lengthT,
the goal of the learner is to minimizeregret, an objective that
quanti�es the performance gap between the learner and the
best possible constant play in retrospect in some competitor
setU : RegretT = supu 2 U

P T
t =1 ` t (w t ) � ` t (u). Adversar-
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ial online learning algorithms provide robust performance in
many complex real-world online prediction problems such
as climate or weather forecasting.

In traditional online learning paradigms, the loss for round
t is revealed to the learner immediately at the end of round
t. However, many real-world applications produce delayed
feedback, i.e., the loss for roundt is not available until round
t + D for some delay periodD:1 Existing delayed online
learning algorithms achieve optimal worst-case regret rates
against adversarial loss sequences, but each has drawbacks
when deployed for real applications with short horizons
T. Some use only a small fraction of the data to train
each learner (Weinberger & Ordentlich, 2002; Joulani et al.,
2013); others tune their parameters using uniform bounds on
future gradients that are often challenging to obtain or overly
conservative in applications (McMahan & Streeter, 2014;
Quanrud & Khashabi, 2015; Joulani et al., 2016; Korotin
et al., 2020; Hsieh et al., 2020). Only the concurrent work
of Hsieh et al. (2020, Thm. 13) can make use of optimistic
hints and only for the special case of unconstrained online
gradient descent.

In this work, we aim to develop robust and practical algo-
rithms for real-world delayed online learning. To this end,
we introduce three novel algorithms—DORM, DORM+,
and AdaHedgeD—that use every observation to train the
learner, have no parameters to tune, exhibit optimal worst-
case regret rates under delay,and enjoy improved perfor-
mance when accurate hints for unobserved losses are avail-
able. We begin by formulating delayed online learning as
a special case of optimistic online learning and use this
“delay-as-optimism” perspective to develop:

1. A formal reduction of delayed online learning to opti-
mistic online learning (Lems. 1 and 2),

2. The �rst optimistic tuning-free and self-tuning algo-
rithms with optimal regret guarantees under delay
(DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning
regret bounds that reveals the robustness of optimistic
algorithms to inaccurate hints (Thms. 3 and 4),

1Our initial presentation will assume constant delayD , but we
provide extensions to variable and unbounded delays in App. O.
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4. The �rst general analysis of follow-the-regularized-
leader (Thms. 5 and 10) and online mirror descent
algorithms (Thm. 6) with optimism and delay, and

5. The �rst meta-algorithm for learning a low-regret opti-
mism strategy under delay (Thm. 13).

We validate our algorithms on the problem of subseasonal
forecasting in Sec. 7. Subseasonal forecasting—predicting
precipitation and temperature 2-6 weeks in advance—is a
crucial task for allocating water resources and preparing
for weather extremes (White et al., 2017). Subseasonal
forecasting presents several challenges for online learning
algorithms. First, real-time subseasonal forecasting suffers
from delayed feedback: multiple forecasts are issued before
receiving feedback on the �rst. Second, the regret horizons
are short: a common evaluation period for semimonthly
forecasting is one year, resulting in 26 total forecasts. Third,
forecasters cannot have dif�cult-to-tune parameters in real-
time, practical deployments. We demonstrate that our al-
gorithms DORM, DORM+, and AdaHedgeD sucessfully
overcome these challenges and achieve consistently low
regret compared to the best forecasting models.

Our Python library for Optimistic Online Learning under
Delay (PoolD) and experiment code are available at
https://github.com/ge�aspohler/poold.

Notation For integersa; b, we use the shorthand[b] ,
f 1; : : : ; bg andga:b ,

P b
i = a gi . We say a functionf is

proper if it is somewhere �nite and never�1 . We let
@f(w) = f g 2 Rd : f (u) � f (w) + hg; u � w i ; 8u 2
Rdg denote the set ofsubgradientsof f atw 2 Rd and sayf
is � -strongly convexover a convex setW � int dom f with
respect tok�k with dual normk�k� if 8w; u 2 W andg 2
@f(w), we havef (u) � f (w)+ hg; u � w i + �

2 kw � uk2.
For differentiable , we de�ne the Bregman divergence
B (w ; u) ,  (w) �  (u) � hr  (u); w � ui . We de�ne
diam(W ) = inf w ;w 02 W kw � w 0k, (r )+ , max(r; 0),
andmin(r; s)+ , (min( r; s))+ .

2. Preliminaries: Optimistic Online Learning

Standard online learning algorithms, such as follow the reg-
ularized leader (FTRL) and online mirror descent (OMD)
achieve optimal worst-case regret against adversarial loss
sequences (Orabona, 2019). However, many loss sequences
encountered in applications are not truly adversarial.Op-
timistic online learning algorithms aim to improve perfor-
mance when loss sequences are partially predictable, while
remaining robust to adversarial sequences (see, e.g., Azoury
& Warmuth, 2001; Chiang et al., 2012; Rakhlin & Sridha-
ran, 2013b; Steinhardt & Liang, 2014). In optimistic online
learning, the learner is provided with a “hint” in the form
of a pseudo-loss~̀t at the start of roundt that represents
a guess for the true unknown loss. The online learner can

incorporate this hint before making playw t .

In standard formulations of optimistic online learning, the
convex pseudo-loss~̀t (w t ) is added to the standard FTRL
or OMD regularized objective function and leads to op-
timistic variants of these algorithms: optimistic FTRL
(OFTRL, Rakhlin & Sridharan, 2013a) and single-step opti-
mistic OMD (SOOMD, Joulani et al., 2017, Sec. 7.2). Let
~gt 2 @~̀

t (w t � 1) andgt 2 @t̀ (w t ) denote subgradients of
the pseudo-loss and true loss respectively. The inclusion of
an optimistic hint leads to the following linearized update
rules for playw t +1 :

w t +1 = argmin
w 2 W

hg1:t + ~gt +1 ; w i + � (w); (OFTRL)

w t +1 = argmin
w 2 W

hgt + ~gt +1 � ~gt ; w i + B� (w ; w t )

with ~g0 = 0 and arbitrary w0 (SOOMD)

where~gt +1 2 Rd is the hint subgradient,� � 0 is a regular-
ization parameter, and is proper regularization function
that is1-strongly convex with respect to a normk�k. The op-
timistic learner enjoys reduced regret whenever the hinting
errorkgt +1 � ~gt +1 k� is small (Rakhlin & Sridharan, 2013a;
Joulani et al., 2017). Common choices of optimistic hints
include the last observed subgradient or average of previ-
ously observed subgradients (Rakhlin & Sridharan, 2013a).
We note that the standard FTRL and OMD updates can be
recovered by setting the optimistic hints to zero.

3. Online Learning with Optimism and Delay

In the delayed feedback setting with constant delay of length
D , the learner only observes(` i )t � D

i =1 before making play
w t +1 . In this setting, we propose counterparts of the OFTRL
and SOOMD online learning algorithms, which we call
optimistic delayed FTRL (ODFTRL) anddelayed optimistic
online mirror descent (DOOMD) respectively:

w t +1 = argmin
w 2 W

hg1:t � D + h t +1 ; w i + � (w)

(ODFTRL)

w t +1 = argmin
w 2 W

hgt � D + h t +1 � h t ; w i + B� (w ; w t )

with h0 , 0 and arbitrary w0; (DOOMD)

for hint vectorh t +1 . Our use of the notationh t +1 instead
of ~gt +1 for the optimistic hint here is suggestive. Our regret
analysis in Thms. 5 and 6 reveals that, instead of hinting only
for the “future“ missing lossgt +1 , delayed online learners
should uses hintsh t that guess at the summed subgradients
of all delayed and future losses:h t =

P t
s= t � D ~gs.

3.1. Delay as Optimism

To analyze the regret of the ODFTRL and DOOMD algo-
rithms, we make use of the �rst key insight of this paper:
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Learning with delay is a special case of learning
with optimism.

In particular, ODFTRL and DOOMD are instances of
OFTRL and SOOMD respectively with a particularly “bad”
choice of optimistic hint~gt +1 that deletes the unobserved
loss subgradientsgt � D +1: t .

Lemma 1(ODFTRL is OFTRL with a bad hint). ODFTRL
is OFTRLwith ~gt +1 = h t +1 �

P t
s= t � D +1 gs.

Lemma 2(DOOMD is SOOMD with a bad hint). DOOMD
is SOOMDwith ~gt +1 = ~gt + gt � D � gt + h t +1 � h t =
h t +1 �

P t
s= t � D +1 gs:

The implication of this reduction of delayed online learning
to optimistic online learning is thatanyregret bound shown
for undelayed OFTRL or SOOMD immediately yields a
regret bound for ODFTRL and DOOMD under delay. As
we demonstrate in the remainder of the paper, this novel
connection between delayed and optimistic online learning
allows us to bound the regret of optimistic, self-tuning, and
tuning-free algorithms for the �rst time under delay.

Finally, it is worth re�ecting on the key property of OFTRL
and SOOMD that enables the delay-to-optimism reduction:
each algorithm depends ongt and~gt +1 only through the
sumg1:t + ~gt +1 .2 For the “bad” hints of Lems. 1 and 2,
these sums are observable even thoughgt and~gt +1 are not
separately observable at timet due to delay. A number of
alternatives to SOOMD have been proposed for optimistic
OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b;
Kamalaruban, 2016). Unlike SOOMD, these procedures all
incorporate optimism in two steps, as in the updates

w t +1 =2 = argmin w 2 W hgt ; w i + B� (w ; w t � 1=2) and

w t +1 = argmin w 2 W h~gt +1 ; w i + B� (w ; w t +1 =2) (1)

described in Rakhlin & Sridharan (2013a, Sec. 2.2). It is
unclear how to reduce delayed OMD to an instance of one of
these two-step procedures, as knowledge of the unobserved
gt is needed to carry out the �rst step.

3.2. Delayed and Optimistc Regret Bounds

To demonstrate the utility of our delay-as-optimism perspec-
tive, we �rst present the following new regret bounds for
OFTRL and SOOMD, proved in Apps. B and C respectively.

Theorem 3(OFTRL regret). If  is nonnegative, then, for
all u 2 W , theOFTRL iteratesw t satisfy

RegretT (u) � � (u) + 1
�

P T
t =1 huber(kgt � ~gt k� ; kgt k� ):

Theorem 4 (SOOMD regret). If  is differentiable and

2For SOOMD,gt + ~gt +1 � ~gt = g1: t + ~gt +1 � (g1: t � 1 + ~gt ).

~gT +1 , 0, then,8u 2 W , theSOOMDiteratesw t satisfy

RegretT (u) � B � (u; w0) +
1
�

P T
t =1 huber(kgt � ~gt k� ; kgt + ~gt +1 � ~gt k� ):

Both results feature the robust Huber penalty (Huber, 1964)

huber(x; y) , 1
2 x2 � 1

2 (jxj � j yj)2
+ � min( 1

2 x2; jyjjxj)

in place of the more common squared error term
1
2 kgt � ~gt k2

� . As a result, Thms. 3 and 4 strictly improve the
rate-optimal OFTRL and SOOMD regret bounds of Rakhlin
& Sridharan (2013a); Mohri & Yang (2016); Orabona (2019,
Thm. 7.28) and Joulani et al. (2017, Sec. 7.2) by revealing a
previously undocumented robustness to inaccurate hints~gt .
We will use this robustness to large hint errorkgt � ~gt k� to
establish optimal regret bounds under delay.

As an immediate consequence of this regret analysis and our
delay-as-optimism perspective, we obtain the �rst general
analyses of FTRL and OMD with optimism and delay.

Theorem 5 (ODFTRL regret). If  is nonnegative, then,
for all u 2 W , theODFTRL iteratesw t satisfy

RegretT (u) � � (u) + 1
�

P T
t =1 b t;F for

b t;F , huber(kh t �
P t

s= t � D gsk� ; kgt k� ):

Theorem 6 (DOOMD regret). If  is differentiable and
hT +1 , gT � D +1: T , then, for allu 2 W , theDOOMD
iteratesw t satisfy

RegretT (u) � B � (u; w0) + 1
�

P T
t =1 b t;O for

b t;O , huber(kh t �
P t

s= t � D gsk� ; kgt � D + h t +1 � h t k� ):

Our results show a compounding of regret due to delay:
the b t;F term of Thm. 5 is of sizeO(D + 1) whenever
kh t k� = O(D + 1) , and the same holds forb t;O of Thm. 6
if kh t +1 � h t k� = O(1). An optimal setting of� therefore
deliversO(

p
(D + 1) T) regret, yielding the minimax opti-

mal rate for adversarial learning under delay (Weinberger
& Ordentlich, 2002). Thms. 5 and 6 also reveal the height-
ened value of optimism in the presence of delay: in addition
to providing an effective guess of the future subgradient
gt , an optimistic hint can approximate the missing delayed
feedback (

P t � 1
s= t � D gs) and thereby signi�cantly reduce the

penalty of delay. If, on the other hand, the hints are a poor
proxy for the missing loss subgradients, the novelhuber
term ensures that we still only pay the minimax optimalp

D + 1 penalty for delayed feedback.

Related work A classical approach to delayed feedback
in online learning is the so-called “replication” strategy
in which D + 1 distinct learners take turns observing and
responding to feedback (Weinberger & Ordentlich, 2002;
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Joulani et al., 2013; Agarwal & Duchi, 2011; Mesterharm,
2005). While minimax optimal in adversarial settings, this
strategy has the disadvantage that each learner only sees

T
D +1 losses and is completely isolated from the other repli-
cates, exacerbating the problem of short prediction horizons.
In contrast, we develop and analyze non-replicated delayed
online learning strategies that use a combination of opti-
mistic hinting and self-tuned regularization to mitigate the
effects of delay while retaining optimal worst-case behavior.

We are not aware of prior analyses of DOOMD, and, to our
knowledge, Thm. 5 and its adaptive generalization Thm. 10
provide the �rst general analysis of delayed FTRL, apart
from the concurrent work of Hsieh et al. (2020, Thm. 1).
Hsieh et al. (2020, Thm. 13) and Quanrud & Khashabi
(2015, Thm. 2.1) focus only on delayed gradient descent,
Korotin et al. (2020) study General Hedging, and Joulani
et al. (2016, Thm. 4) and Quanrud & Khashabi (2015,
Thm. A.5) study non-optimistic OMD under delay. Thms. 5,
6, and 10 strengthen these results from the literature which
feature a sum of subgradient norms (

P t � 1
s= t � D kgsk� or

Dkgt k� ) in place ofkh t �
P t � 1

s= t � D gsk� . Even in the ab-
sence of optimism, the latter can be signi�cantly smaller:
e.g., if the gradientsgs are i.i.d. mean-zero vectors, the for-
mer has size
( D ) while the latter has expectationO(

p
D).

In the absence of optimism, McMahan & Streeter (2014)
obtain a bound comparable to Thm. 5 for the special case of
one-dimensional unconstrained online gradient descent.

In the absence of delay, Cutkosky (2019) introduces meta-
algorithms for imbuing learning procedures with optimism
while remaining robust to inaccurate hints; however, unlike
OFTRL and SOOMD, the procedures of Cutkosky require
separate observation of~gt +1 and eachgt , making them
unsuitable for our delay-to-optimism reduction.

3.3. Tuning Regularizers with Optimism and Delay

The online learning algorithms introduced so far all include
a regularization parameter� . In theory and in practice,
these algorithms only achieve low regret if the regulariza-
tion parameter� is chosen appropriately. In standard FTRL,
for example, one such setting that achieves optimal regret

is � =

r
P T

t =1 kg t k2
�

supu 2 U  (u ) . This choice, however, cannot be

used in practice as it relies on knowledge of all future un-
observed loss subgradients. To make use of online learning
algorithms, the tuning parameter� is often set using coarse
upper bounds on, e.g., the maximum possible subgradient
norm. However, these bounds are often very conservative
and lead to poor real-world performance.

In the following sections, we introduce two strategies for
tuning regularization with optimism and delay. Sec. 4 in-
troduces the DORM and DORM+ algorithms, variants of
ODFTRL and DOOMD that areentirely tuning-free. Sec. 5

introduces the AdaHedgeD algorithm, an adaptive variant
of ODFTRL that isself-tuning; a sequence of regulariza-
tion parameters� t are set automatically using new, tighter
bounds on algorithm regret. All three algorithms achieve the
minimax optimal regret rate under delay, support optimism,
and have strong real-world performance as shown in Sec. 7.

4. Tuning-free Learning with Optimism
and Delay

Regret matching (RM) (Blackwell, 1956; Hart & Mas-
Colell, 2000) and regret matching+ (RM+) (Tammelin et al.,
2015) are online learning algorithms that have strong em-
pirical performance. RM was developed to �nd correlated
equilibria in two-player games and is commonly used to
minimize regret over the simplex. RM+ is a modi�cation
of RM designed to accelerate convergence and used to ef-
fectively solve the game of Heads-up Limit Texas Hold'em
poker (Bowling et al., 2015). RM and RM+ support neither
optimistic hints nor delayed feedback, and known regret
bounds have a suboptimal scaling with respect to the prob-
lem dimensiond (Cesa-Bianchi & Lugosi, 2006; Orabona
& Pál, 2015). To extend these algorithms to the delayed
and optimistic setting and recover the optimal regret rate,
we introduce our generalizations,delayed optimistic regret
matching(DORM)

w t +1 = ~w t +1 =h1; ~w t +1 i for (DORM)

~w t +1 , max(0; (r 1:t � D + h t +1 )=� )q� 1

anddelayed optimistic regret matching+(DORM+)

w t +1 = ~w t +1 =h1; ~w t +1 i for h0 = ~w0 , 0; (DORM+)

~w t +1 , max
�
0; ~w p� 1

t + ( r t � D + h t +1 � h t )=�
� q� 1

;

Each algorithm makes use of an instantaneous regret vector
r t , 1hgt ; w t i � gt that quanti�es the relative performance
of each expert with respect to the playw t and the linearized
loss subgradientgt . The updates also include a parameter
q � 2 and its conjugate exponentp = q=(q � 1) that is
set to recover the minimax optimal scaling of regret with
the number of experts (see Cor. 9). We note that DORM
and DORM+ recover the standard RM and RM+ algorithms
whenD = 0 , � = 1 , q = 2 , andh t = 0; 8t.

4.1. Tuning-free Regret Bounds

To bound the regret of the DORM and DORM+ plays, we
prove that DORM is an instance of ODFTRL and DORM+
is an instance of DOOMD. This connection enables us
to immediately provide regret guarantees for these regret-
matching algorithms under delayed feedback and with opti-
mism. We �rst highlight a remarkable property of DORM
and DORM+ that is the basis of their tuning-free nature.
Under mild conditions:



Online Learning with Optimism and Delay

The normalized DORM and DORM+ iteratesw t

areindependentof the choice of regularization
parameter� .

Lemma 7(DORM and DORM+ are independent of� ). If
the subgradientgt and hinth t +1 only depend on� through
(w s; � q� 1 ~w s; gs� 1; hs)s� t and (w s; � q� 1 ~w s; gs; hs)s� t

respectively, then theDORM andDORM+ iterates(w t )t � 1

are independent of the choice of� > 0.

Lem. 7, proved in App. E, implies that DORM and DORM+
areautomaticallyoptimally tuned with respect to� , even
when run with a default value of� = 1 . Hence, these
algorithms are tuning-free, a very appealing property for
real-world deployments of online learning.

To show that DORM and DORM+ also achieve optimal
regret scaling under delay, we connect them to ODFTRL
and DOOMD operating on the nonnegative orthant with a
special surrogate losŝ` t (see App. D for our proof):

Lemma 8(DORM is ODFTRL and DORM+ is DOOMD).
The DORM and DORM+ iterates are proportional to
ODFTRLandDOOMD iterates respectively withW , Rd

+ ,
 ( ~w) = 1

2 k ~wk2
p, and losŝ̀ t ( ~w) = h~w; � r t i .

Lem. 8 enables the following optimally-tuned regret bounds
for DORM and DORM+ run with any choice of� :

Corollary 9 (DORM and DORM+ regret). Under the as-
sumptions of Lem. 7, for allu 2 4 d� 1 and any choice of
� > 0, theDORM andDORM+ iteratesw t satisfy

RegretT (u) � inf
�> 0

�
2 kuk2

p + 1
� (p� 1)

P T
t =1 b t;q

=
q

ku k2
p

2(p� 1)

P T
t =1 b t;q �

q
d2=q (q� 1)

2

P T
t =1 b t; 1

wherehT +1 , r T � D +1: T and, for eachc 2 [2; 1 ],

b t;c
(DORM)

= huber(kh t �
P t

s= t � D r skc; kr t kc) and

b t;c
(DORM+)

= huber(kh t �
P t

s= t � D r sk2
c ;

kr t � D + h t +1 � h t kc):

If, in addition, q = argmin q0� 2 d2=q0
(q0 � 1), then

RegretT (u) �
q

(2 log2(d) � 1)
P T

t =1 b t; 1 .

Cor. 9, proved in App. F, suggests a natural hinting strategy
for reducing the regret of DORM and DORM+: predict the
sum of unobserved instantaneous regrets

P t
s= t � D r s. We

explore this strategy empirically in Sec. 7. Cor. 9 also high-
lights the value of theq parameter in DORM and DORM+:
using the easily computed valueq = argmin q0� 2 d2=q0

(q0�
1) yields the minimax optimal

p
log2(d) dependence of re-

gret on dimension (Cesa-Bianchi & Lugosi, 2006; Orabona
& Pál, 2015). By Lem. 8, settingq in this way is equivalent

to selecting a robust12 k�k2
p regularizer (Gentile, 2003) for

the underlying ODFTRL and DOOMD problems.

Related work Without delay, Farina et al. (2021) inde-
pendently developed optimistic versions of RM and RM+
by reducing them to OFTRL and a two-step variant of opti-
mistic OMD (1). Unlike SOOMD, this two-step optimistic
OMD requires separate observation of~gt +1 andgt , mak-
ing it unsuitable for our delay-as-optimism reduction and
resulting in a different algorithm from DORM+ even when
D = 0 . In addition, their regret bounds and prior bounds
for RM and RM+ (special cases of DORM and DORM+
with q = 2 ) have suboptimal regret when the dimensiond
is large (Bowling et al., 2015; Zinkevich et al., 2007).

5. Self-tuned Learning with Optimism
and Delay

In this section, we analyze an adaptive version of ODFTRL
with time-varying regularization� t  and develop strategies
for setting� t appropriately in the presence of optimism
and delay. We begin with a new general regret analysis of
optimistic delayedadaptiveFTRL (ODAFTRL)

w t +1 = argmin
w 2 W

hg1:t � D + h t +1 ; w i + � t +1  (w)

(ODAFTRL)

whereh t +1 2 Rd is an arbitrary hint vector revealed before
w t +1 is generated, is 1-strongly convex with respect to a
normk�k, and� t � 0 is a regularization parameter.

Theorem 10(ODAFTRL regret). If  is nonnegative and
� t is non-decreasing int, then,8u 2 W , theODAFTRL
iteratesw t satisfy

RegretT (u) � � T  (u) +
P T

t =1 min( b t;F

� t
; at;F ) with

b t;F , huber(kh t �
P t

s= t � D gsk� ; kgt k� ) and (2)

at;F , diam(W ) min
�
kh t �

P t
s= t � D gsk� ; kgt k�

�
:

The proof of this result in App. G builds on a new regret
bound for undelayed optimistic adaptive FTRL (OAFTRL).
In the absence of delay (D = 0 ), Thm. 10 strictly im-
proves existing regret bounds (Rakhlin & Sridharan, 2013a;
Mohri & Yang, 2016; Joulani et al., 2017) for OAFTRL
by providing tighter guarantees whenever the hinting error
kh t �

P t
s= t � D gt k� is larger than the subgradient magni-

tude kgt k� . In the presence of delay, Thm. 10 bene�ts
both from robustness to hinting error in the worst case
and the ability to exploit accurate hints in the best case.
The bounded-domain factorsat;F strengthen both standard
OAFTRL regret bounds and the concurrent bound of Hsieh
et al. (2020, Thm. 1) whendiam(W ) is small and will en-
able us to design practical� t -tuning strategies under delay
without any prior knowledge of unobserved subgradients.
We now turn to these self-tuning protocols.
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5.1. Conservative Tuning with Delayed Upper Bound

Setting aside theat;F bounded-domain factors in Thm. 10

for now, the adaptive sequence� t =
q P t

s =1 b s;F

supu 2 U  (u ) is
known to be a near-optimal minimizer of the ODAFTRL
regret bound (McMahan, 2017, Lemma 1). However, this
value is unobservable at timet. A common strategy is to

play the conservative value� t =

r
(D +1) B 0 +

P t � D � 1
s =1 b s;F

supu 2 U  (u ) ,

whereB0 is a uniform upper bound on the unobservedbs;F

terms (Joulani et al., 2016; McMahan & Streeter, 2014). In
practice, this requires computing ana priori upper bound
on any subgradient norm that could possibly arise and often
leads to extreme over-regularization (see Sec. 7).

As a preliminary step towards fully adaptive settings of� t ,
we analyze in App. H a newdelayed upper bound(DUB)
tuning strategy which relies only on observedbs;F terms
and does not require upper bounds for future losses.

Theorem 11(DUB regret). Fix � > 0, and, forat;F ; b t;F

as in(2), consider thedelayed upper bound(DUB) sequence

� t +1 = 2
� maxj � t � D � 1 aj � D +1: j;F (DUB)

+ 1
�

q P t � D
i =1 a2

i;F + 2 � b i;F :

If  is nonnegative, then, for allu 2 W , theODAFTRL
iteratesw t satisfy

RegretT (u) �
�  (u )

� + 1
�

�
2 maxt 2 [T ] at � D :t � 1;F +

q P T
t =1 a2

t;F + 2 � b t;F
�
:

As desired, the DUB setting of� t depends only on previ-
ously observedat;F andb t;F terms and achieves optimal
regret scaling with the delay periodD . However, the terms
at;F , b t;F are themselves potentially loose upper bounds for
the instantaneous regret at timet. In the following section,
we show how the DUB regularization setting can be re�ned
further to produce AdaHedgeD adaptive regularization.

5.2. Re�ned Tuning with AdaHedgeD

As noted by Erven et al. (2011); de Rooij et al. (2014);
Orabona (2019), the effectiveness of an adaptive regular-
ization setting� t that uses an upper bound on regret (such
asb t;F ) relies heavily on the tightness of that bound. In
practice, we want to set� t using as tight a bound as possi-
ble. Our next result introduces a new tuning sequence that
can be used with delayed feedback and is inspired by the
popular AdaHedge algorithm (Erven et al., 2011). It makes
use of the tightened regret analysis underlying Thm. 10 to
enable tighter settings of� t compared to DUB, while still
controlling algorithm regret (see proof in App. I).

Theorem 12(AdaHedgeD regret). Fix � > 0, and consider

thedelayed AdaHedge-style(AdaHedgeD) sequence

� t +1 = 1
�

P t � D
s=1 � s for (AdaHedgeD)

� t , min(Ft +1 (w t ; � t ) � Ft +1 ( �w t ; � t ); hgt ; w t � �w t i ;

Ft +1 (ŵ t ; � t ) � Ft +1 ( �w t ; � t ) + hgt ; w t � ŵ t i )+

with �w t , argminw 2 W Ft +1 (w ; � t ); (3)

ŵ t , argminw 2 W Ft +1 (w ; � t ) +

min( kg t k �

kh t � g t � D : t k �
; 1)hh t � gt � D :t ; w i ;

and Ft +1 (w ; � t ) , � t  (w) + hg1:t ; w i :

If  is nonnegative, then, for allu 2 W , theODAFTRL
iterates satisfy

RegretT (u) �
�  (u )

� + 1
�

�
2 maxt 2 [T ] at � D :t � 1;F +

q P T
t =1 a2

t;F + 2 � b t;F
�
:

Remarkably, Thm. 12 yields a minimax optimal
O(

p
(D + 1) T + D) dependence on the delay parameter

and nearly matches the Thm. 5 regret of the optimal constant
� tuning. Although this regret bound is identical to that in
Thm. 11, in practice the� t values produced by AdaHedgeD
can be orders of magnitude smaller than those of DUB,
granting additional adaptivity. We evaluate the practical
implications of these� t settings in Sec. 7.

As a �nal note, when is bounded onU , we recommend
choosing� = supu 2 U  (u) so that (u )

� � 1. For negative
entropy regularization (u) =

P d
j =1 u j ln(u j ) + ln( d) on

the simplexU = W = 4 d� 1, this yields� = ln( d) and a
regret bound with minimax optimal

p
ln(d) dependence on

d (Cesa-Bianchi & Lugosi, 2006; Orabona & Pál, 2015).

Related work Our AdaHedgeD� t terms differ from
standard AdaHedge increments (see, e.g., Orabona, 2019,
Sec. 7.6) due to the accommodation of delay, the incorpora-
tion of optimism, and the inclusion of the �nal two terms in
themin. These non-standard terms are central to reducing
the impact of delay on our regret bounds. Prior and con-
current approaches to adaptive tuning under delay do not
incorporate optimism and require an explicit upper bound
on all future subgradient norms, a quantity which is often
dif�cult to obtain or very loose (McMahan & Streeter, 2014;
Joulani et al., 2016; Hsieh et al., 2020). Our optimistic al-
gorithms, DUB and AdaHedgeD, admit comparable regret
guarantees (Thms. 11 and 12) but require no prior knowl-
edge of future subgradients.

6. Learning to Hint with Delay

As we have seen, optimistic hints play an important role in
online learning under delay: effective hinting can counteract
the increase in regret under delay. In this section, we con-
sider the problem of choosing amongst several competing
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hinting strategies. We show that this problem can again be
treated as a delayed online learning problem. In the fol-
lowing, we will call the original online learning problem
the “base problem” and the learning-to-hint problem the
“hinting problem.”

Suppose that, at timet, we observe the hints~gt of m differ-
ent hinters arranged into ad � m matrixH t . Each column
of H t is one hinter's best estimate of the sum of missing
loss subgradientsgt � D :t . Our aim is to output a sequence
of combined hintsh t (! t ) , H t ! t with low regret relative
to the best constant combination strategy! 2 
 , 4 m � 1

in hindsight. To achieve this using delayed online learning,
we make use of a convex loss functionl t (! ) for the hint
learner that upper bounds the base learner regret.
Assumption 1 (Convex regret bound). For any hint se-
quence(h t )T

t =1 andu 2 
 , the base problem admits the

regret boundRegretT (u) � C0(u)+ C1(u)
q P T

t =1 f t (h t )
for C1(u) � 0 and convex functionsf t independent ofu.

As we detail in App. K, Assump. 1 holds for all of the
learning algorithms introduced in this paper. For example,
by Cor. 9, if the base learner is DORM, we may choose

C0(u) = 0 , C1(u) =
q

ku k2
p

2(p� 1) ; and theO(D + 1) convex

functionf t (h t ) = kr t kqkh t �
P t

s= t � D r skq � b t;q .3

For any base learner satisfying Assump. 1, we choose
l t (! ) = f t (H t ! ) as our hinting loss, use the tuning-free
DORM+ algorithm to output the combination weights! t

on each round, and provide the hinth t (! t ) = H t ! t to the
base learner. The following result, proved in App. J, shows
that this learning to hint strategy performs nearly as well as
the best constant hint combination strategy in restrospect.
Theorem 13(Learning to hint regret). Suppose the base
problem satis�es Assump. 1 and the hinting problem is
solved withDORM+ hint iterates! t , hinting lossesl t (! ) =
f t (H t ! ), no meta-hints for the hinting problem, andq =
argminq0� 2 m2=q0

(q0 � 1). Then the base problem with
hintsh t (! t ) = H t ! t satis�es

RegretT (u) � C0(u) + C1(u)
q

inf ! 2 

P T

t =1 f t (h t (! ))

+ C1(u)
�
(2 log2(m) � 1)( 1

2 � T +
P T � 1

t =1 huber(� t ; � t ))
� 1=4

for � t , 4(D + 1)
P t

s= t � D k
 sk2
1 ; 
 t 2 @lt (! t );

and � t , 4k
 t � D k1
P t

s= t � D k
 sk1 :

To quantify the size of this regret bound, con-
sider again the DORM base learner withf t (h t ) =
kr t kqkh t �

P t
s= t � D r skq. By Lem. 26 in App. K,

k
 t k1 � d1=qkH t k1 kr t kq for kH t k1 the maximum ab-
solute entry ofH t . Each column ofH t is a sumD + 1

3The alternative choicef t (h t ) = 1
2 kh t �

P t
s= t � D r sk2

q also
bounds regret but may have size�(( D + 1) 2).

subgradient hints, sokH t k1 is O(D + 1) . Thus, for this
choice of hinter loss, thehuber(� t ; � t ) term isO((D + 1) 3),
and the hint learner suffers onlyO(T1=4(D + 1) 3=4) ad-
ditional regret from learning to hint. Notably, this addi-
tive regret penalty isO(

p
(D + 1) T) if D = O(T) (and

o(
p

(D + 1) T) whenD = o(T)), so the learning to hint
strategy of Thm. 13 preserves minimax optimal regret rates.

Related work Rakhlin & Sridharan (2013a, Sec. 4.1)
propose and analyze a method to learn optimism strategies
for a two-step OMD base learner. Unlike Thm. 13, the
approach does not accommodate delay, and the analyzed
regret is only with respect to single hinting strategies! 2
f ej gj 2 [m ] rather than combination strategies,! 2 4 m � 1.

7. Experiments

We now apply the online learning techniques developed
in this paper to the problem of adaptive ensembling for
subseasonal forecasting. Our experiments are based on
the subseasonal forecasting data of Flaspohler et al. (2021)
that provides the forecasts ofd = 6 machine learning and
physics-based models for both temperature and precipita-
tion at two forecast horizons: 3-4 weeks and 5-6 weeks. In
operational subseasonal forecasting, feedback is delayed;
models makeD = 2 or 3 forecasts (depending on the fore-
cast horizon) before receiving feedback. We use delayed,
optimistic online learning to play a time-varying convex
combination of input models and compete with the best
input model over a year-long prediction period (T = 26
semimonthly dates). The loss function is the geographic
root-mean squared error (RMSE) across514 locations in
the Western United States.

We evaluate the relative merits of the delayed online learning
techniques presented by computing yearly regret and mean
RMSE for the ensemble plays made by the online leaner
in each year from 2011-2020. Unless otherwise speci�ed,
all online learning algorithms use therecent g hint ~gs,
which approximates each unobserved subgradient at time
t with the most recent observed subgradientgt � D � 1. See
App. L for full experimental details, App. N for algorithmic
details, and App. M for extended experimental results.

Competing with the best input model The primary ben-
e�t of online learning in this setting is its ability to achieve
small average regret, i.e., to perform nearly as well as the
best input model in the competitor setU without knowing
which is best in advance. We run our three delayed online
learners—DORM, DORM+, and AdaHedgeD—on all four
subseasonal prediction tasks and measure their average loss.

The average yearly RMSE for the three online learning al-
gorithms and the six input models is shown in Table 1. The
DORM+ algorithm tracks the performance of the best input
model for all tasks except Temp. 5-6w. All online learning
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A. Extended Literature Review

We review here additional prior work not detailed in the main paper.

A.1. General online learning

We recommend the monographs of Shalev-Shwartz (2012); Orabona (2019) and the textbook of Cesa-Bianchi & Lugosi
(2006) for surveys of the �eld of online learning and Joulani et al. (2017); McMahan (2017) for widely applicable and
modular analyses of online learning algorithms.

A.2. Online learning with optimism but without delay

Syrgkanis et al. (2015) analyzed optimistic FTRL and two-step variant of optimistic MD without delay. The work focuses
on a particular form of optimism (using the last observed subgradient as a hint) and shows improved rates of convergence to
correlated equilibria in multiplayer games. In the absence of delay, Steinhardt & Liang (2014) combined optimism and
adaptivity to obtain improvements over standard optimistic regret bounds.

A.3. Online learning with delay but without optimism

Overview Joulani et al. (2013; 2016); McMahan & Streeter (2014) provide broad reviews of progress on delayed online
learning.

Delayed stochastic optimization Recht et al. (2011); Agarwal & Duchi (2011); Nesterov (2012); Liu et al. (2014); Liu &
Wright (2015); Sra et al. (2016) studied the effects of delay on stochastic optimization but do not treat the adversarial setting
studied here.

FTRL-Prox vs. FTRL Joulani et al. (2016) analyzed the delayed feedback regret of theFTRL-Proxalgorithm, which
regularizes toward the last played iterate as in online mirror descent, but did not study the standard FTRL algorithms
(sometimes calledFTRL-Centered) analyzed in this work.

A.4. Self-tuned online learning without delay or optimism

In the absence of optimism and delay, de Rooij et al. (2014); Orabona & Pál (2015); Koolen et al. (2014) developed
alternative variants of FTRL algorithms that self-tune their learning rates.

A.5. Online learning without delay for climate forecasting

Monteleoni et al. (2011) applied the Learn-� online learning algorithm of Monteleoni & Jaakkola (2004) to the task of
ensembling climate models. The authors considered historical temperature data from 20 climate models and tracked the
changing sequence of which model predicts best at any given time. In this context, the algorithm used was based on a
set of generalized Hidden Markov Models, in which the identity of the current best model is the hidden variable and the
updates are derived as Bayesian updates. This work was extended to take into account the in�uence of regional neighboring
locations when performing updates (McQuade & Monteleoni, 2012). These initial results demonstrated the promise of
applying online learning to climate model ensembling, but both methods rely on receiving feedback without delay.

B. Proof of Thm. 3: OFTRL regret

We will prove the following more general result for optimistic adaptive FTRL (OAFTRL)

w t +1 = argmin w 2 W hg1:t + ~gt +1 ; w i + � t +1  (w); (OAFTRL)

from which Thm. 3 will follow with the choice� t = � for all t � 1.
Theorem 14(OAFTRL regret). If  is nonnegative and(� t )t � 1 is non-decreasing, then,8u 2 W , theOAFTRL iterates
w t satisfy,

RegretT (u) � � T  (u) +
P T

t =1 � t

� � T  (u) +
P T

t =1 min
�

1
� t

huber(kgt � ~gt k� ; kgt k� ); diam(W ) min( kgt � ~gt k� ; kgt k� )
�
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for

� t , min(Ft +1 (w t ; � t ) � Ft +1 ( �w t ; � t ); hgt ; w t � �w t i ;

Ft +1 (ŵ t ; � t ) � Ft +1 ( �w t ; � t ) + hgt ; w t � ŵ t i )+ with

�w t , argminw 2 W Ft +1 (w ; � t ); Ft +1 (w ; � t ) , � t  (w) + hg1:t ; w i ; and

ŵ t , argminw 2 W � t  (w) + hg1:t + min( kg t k �

k~g t � g t k �
; 1)(~gt � gt ); w i :

Proof. Consider a sequence of arbitrary auxiliary subgradient hints~g�
1 ; : : : ; ~g�

T 2 Rd and the auxiliary OAFTRL sequence

w �
t +1 = argmin w � 2 W hg1:t + ~g�

t +1 ; w � i + � t +1  (w � ) for 0 � t � T with ~g�
T +1 , 0 and � T +1 = � T : (4)

Generalizing the forward regret decomposition of Joulani et al. (2017) and the prediction drift decomposition of Joulani et al.
(2016), we will decompose the regret of our original(w t )T

t =1 sequence into the regret of the auxiliary sequence(w �
t )T

t =1
and the drift between(w t )T

t =1 and(w �
t )T

t =1 .

For each timet, de�ne the auxiliary optimistic objective function~F �
t (w) = Ft (w) + h~g�

t ; w i . Fixing anyu 2 W , we have
the regret bound

RegretT (u) =
P T

t =1 ` t (w t ) � ` t (u) �
P T

t =1 hgt ; w t � ui (since each̀t is convex withgt 2 @t̀ (w t ))

=
P T

t =1 hgt ; w t � w �
t i

| {z }
drift

+
P T

t =1 hgt ; w �
t � ui

| {z }
auxiliary regret

:

To control the drift term we employ the following lemma, proved in App. B.1, which bounds the difference between two
OAFTRL optimizers with different losses but common regularizers.

Lemma 15(OAFTRL difference bound). TheOAFTRL and auxiliaryOAFTRL iterates(4), w t andw �
t , satisfy

kw t � w �
t k � min( 1

� t
k~gt � ~g�

t k� ; diam(W )) :

Lettinga = diam( W ) 2 R [ f1g , we now bound each drift term summand using the Fenchel-Young inequality for dual
norms and Lem. 15:

hgt ; w t � w �
t i � k gt k� kw t � w �

t k � min
�

1
� t

kgt k� k~gt � ~g�
t k� ; akgt k�

�
:

To control the auxiliary regret, we begin by invoking the OAFTRL regret bound of Orabona (2019, proof of Thm. 7.28), the
nonnegativity of , and the assumption that(� t )t � 1 is non-decreasing:

P T
t =1 hgt ; w �

t � ui � � T +1  (u) � � 1 (w �
1) +

P T
t =1 Ft +1 (w �

t ; � t ) � Ft +1 ( �w t ; � t ) + ( � t � � t +1 ) (w �
t +1 )

� � T +1  (u) � � 1 (w �
1) +

P T
t =1 Ft +1 (w �

t ; � t ) � Ft +1 ( �w t ; � t ):

We next bound the summands in this expression in two ways. Sincew �
t is the minimizer of ~F �

t , we may apply the
Fenchel-Young inequality for dual norms to conclude that

Ft +1 (w �
t ; � t ) � Ft +1 ( �w t ; � t ) = ~F �

t (w �
t ) + hw �

t ; gt � ~g�
t i � ( ~F �

t ( �w t ) + h�w t ; gt � ~g�
t i )

� h w �
t � �w t ; gt � ~g�

t i � k w �
t � �w t kkgt � ~g�

t k� � akgt � ~g�
t k� :

Moreover, by Orabona (2019, proof of Thm. 7.28) and the fact that�w t minimizesFt +1 (�; � t ) overW ,

Ft +1 (w �
t ; � t ) � Ft +1 ( �w t ; � t ) � kg t � ~g �

t k2
�

2� t
:

Our collective bounds establish that

� t (~g�
t ) , Ft +1 (w �

t ; � t ) � Ft +1 ( �w t ; � t ) + hgt ; w t � w �
t i

� min( 1
2� t

kgt � ~g�
t k2

� ; akgt � ~g�
t k� ) + min( 1

� t
kgt k� k~gt � ~g�

t k� ; akgt k� )

� 1
2� t

kgt � ~g�
t k2

� + 1
� t

kgt k� k~gt � ~g�
t k� :
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To obtain an interpretable bound on regret, we will minimize the �nal expression over all convex combinations~g�
t of gt and

~gt . The optimal choice is given by

ĝt = gt + c� (~gt � gt ) for

c� , min( kg t k �

k~g t � g t k �
; 1) = argmin

c� 1;~g �
t = g t + c( ~g t � g t )

1
2� t

kgt � ~g�
t k2

� + 1
� t

kgt k� k~gt � ~g�
t k�

= argmin c� 1
c2

2� t
kgt � ~gt k2

� + 1� c
� t

kgt k� k~gt � gt k� :

For this choice, we obtain the bound

(� t (ĝt ))+ � 1
2� t

kgt � ĝt k2
� + 1

� t
kgt k� kĝt � ~gt k�

= c2
�

2� t
kgt � ~gt k2

� + 1� c�
� t

kgt k� kgt � ~gt k�

= 1
2� t

min(kgt � ~gt k� ; kgt k� )2 + 1
� t

kgt k� (kgt � ~gt k� � k gt k� )+

= 1
2� t

(kgt � ~gt k2
� � (kgt � ~gt k� � k gt k� )2

+ )

= 1
� t

huber(kgt � ~gt k� ; kgt k� )

and therefore

� t = min( � t (~gt ); � t (gt ); � t (ĝt ))+ � min( 1
� t

huber(kgt � ~gt k� ; kgt k� ); amin(kgt � ~gt k� ; kgt k� )) : (5)

Since~g�
t is arbitrary, the advertised regret bounds follow as

RegretT (u) � inf ~g �
1 ;:::; ~g �

T 2 Rd � T +1  (u) +
P T

t =1 � t (~g�
t )

= � T +1  (u) +
P T

t =1 inf ~g �
t 2 Rd � t (~g�

t )

� � T +1  (u) +
P T

t =1 min( � t (~gt ); � t (gt ); � t (ĝt ))+ :

B.1. Proof of Lem. 15: OAFTRL difference bound

Fix any timet, and de�ne the optimistic objective function~Ft (w) = � t  (w) +
P t � 1

i =1 hgi ; w i + h~gt ; w i and the auxiliary
optimistic objective function~F �

t (w) = � t  (w) +
P t � 1

i =1 hgi ; w i + h~g�
t ; w i so thatw t 2 argminw 2 W

~Ft (w) andw �
t 2

argminw 2 W
~F �

t (w). We have

~F �
t (w t ) � ~F �

t (w �
t ) � � t

2 kw t � w �
t k2 by the strong convexity of~F �

t and
~Ft (w �

t ) � ~Ft (w t ) � � t
2 kw t � w �

t k2 by the strong convexity of~Ft .

Summing the above inequalities and applying the Fenchel-Young inequality for dual norms, we obtain

� t kw t � w �
t k2 � h ~g�

t � ~gt ; w t � w �
t i � k ~gt � ~g�

t k� kw t � w �
t k;

which yields the �rst half of our target bound after rearrangement. The second half follows from the de�nition of diameter,
askw t � w �

t k � diam(W ).

C. Proof of Thm. 4: SOOMD regret

We will prove the following more general result for adaptive SOOMD (ASOOMD)

w t +1 = argmin
w 2 W

hgt + ~gt +1 � ~gt ; w i + � t +1 B (w ; w t ) with arbitrary w0 and g0 = ~g0 = 0 (ASOOMD)

from which Thm. 4 will follow with the choice� t = � for all t � 1.
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Theorem 16(ASOOMD regret). Fix any � T +1 � 0. If each(� t +1 � � t ) is proper and differentiable,� 0 , 0, and
~gT +1 , 0, then, for allu 2 W , theASOOMDiteratesw t satisfy

RegretT (u) �
P T

t =0 (� t +1 � � t )B (u; w t )+
P T

t =1 min
�

diam(W )kgt � ~gt k� ; 1
� t +1

huber(kgt � ~gt k� ; kgt + ~gt +1 � ~gt k� )
�
:

Proof. Fix anyu 2 W , instantiate the notation of Joulani et al. (2017, Sec. 7.2), and consider the choices

• r 1 = � 2 , r t = ( � t +1 � � t ) for t � 2, so thatr 1:t = � t +1  for t � 1,

• qt = ~qt + h~gt +1 � ~gt ; �i for t � 0,

• ~q0(w) = � 1B (w ; w0) and~qt � 0 for all t � 1,

• p1 , r 1 � q0 = r 1 � ~q0 � h ~g1 � ~g0; �i = � 2 � � 1B (�; w0) � h ~g1 � ~g0; �i ,

• pt , r t � qt � 1 = r t � ~qt � 1 � h ~gt � ~gt � 1; �i = ( � t +1 � � t ) � h ~gt � ~gt � 1; �i for all t � 2.

Since, for eacht, � t = 0 and` t is convex, the ADA-MD regret inequality of Joulani et al. (2017, Eq. (24)) and the choice
~gT +1 = 0 imply that

RegretT (u) =
TX

t =1

` t (w t ) �
TX

t =1

` t (u)

� �
TX

t =1

B` t (u; w t ) +
TX

t =0

qt (u) � qt (w t +1 ) +
TX

t =1

Bpt (u; w t )

�
TX

t =1

Br 1: t (w t +1 ; w t ) +
TX

t =1

hgt ; w t � w t +1 i +
TX

t =1

� t

� � 1(B (u; w0) � B  (w1; w0)) +
TX

t =0

h~gt +1 � ~gt ; u � w t +1 i

+
TX

t =1

(� t +1 � � t )B (u; w t ) +
TX

t =1

hgt ; w t � w t +1 i � � t +1 B (w t +1 ; w t )

=
TX

t =0

(� t +1 � � t )B (u; w t ) +
TX

t =0

hgt � ~gt ; w t � w t +1 i � � t +1 B (w t +1 ; w t ): (6)

To obtain our advertised bound, we begin with the expression (6) and invoke the1-strong convexity of and the nonnegativity
of B� (w1; w0) to �nd

RegretT (u) �
P T

t =0 (� t +1 � � t )B (u; w t ) +
P T

t =0 hgt � ~gt ; w t � w t +1 i � � t +1 B (w t +1 ; w t )

�
P T

t =0 (� t +1 � � t )B (u; w t ) +
P T

t =1 hgt � ~gt ; w t � w t +1 i � � t +1

2 kw t � w t +1 k2: (7)

We will bound the �nal sum in this expression using two lemmas. The �rst is a bound on the difference between subsequent
ASOOMD iterates distilled from Joulani et al. (2016, proof of Prop. 2).

Lemma 17(ASOOMD iterate bound (Joulani et al., 2016, proof of Prop. 2)). If  is differentiable and1-strongly convex
with respect tok�k, then theASOOMDiterates satisfy

kw t � w t +1 k � 1
� t +1

kgt + ~gt +1 � ~gt k� :

The second, proved in App. C.1, is a general bound onhg; v i � �
2 kvk2 under a norm constraint onv .
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Lemma 18(Norm-constrained conjugate). For anyg 2 Rd and�; c; b > 0,

sup
v 2 Rd :kv k� min( c

� ;b)
hg; v i � �

2 kvk2 = 1
� min(kgk� ; c; b� )(kgk� � 1

2 min(kgk� ; c; b� ))

� min(bkgk� ; 1
� min(kgk� ; c)(kgk� � 1

2 min(kgk� ; c)))

= min( bkgk� ; 1
2� (kgk2

� � (kgk� � min(kgk� ; c))2))

= min( bkgk� ; 1
2� (kgk2

� � (kgk� � c)2
+ ))

� min( 1
2� kgk2

� ; 1
� ckgk� ; bkgk� ):

By Lems. 17 and 18 and the de�nition ofa , diam(W ), each summand in our regret bound (7) satis�es

hgt � ~gt ; w t � w t +1 i � � t +1

2 kw t � w t +1 k2 � sup
v 2 Rd :kv k� min( 1

� t +1
kg t + ~g t +1 � ~g t k � ;a )

hgt � ~gt ; v i � � t +1

2 kvk2

= min
�
akgt � ~gt k� ; 1

2� t +1
(kgt � ~gt k2

� � (kgt � ~gt k� � k gt + ~gt +1 � ~gt k� )2
+ )

�

yielding the advertised result.

C.1. Proof of Lem. 18: Norm-constrained conjugate

By the de�nition of the dual norm,

sup
v 2 Rd :kv k� min( c

� ;b)
hg; v i � �

2 kvk2 = sup
a� min( c

� ;b)
sup

v 2 Rd :kv k� a
hg; v i � �

2 a2 = sup
a� min( c

� ;b)
akgk� � �

2 a2

= 1
� min(kgk� ; c; b� )(kgk� � 1

2 min(kgk� ; c; b� )) � min( 1
� ckgk� ; bkgk� ):

We compare to the values of less constrained optimization problems to obtain the �nal inequalities:

sup
a� min( c

� ;b)
akgk� � �

2 a2 � sup
a� c

�

akgk� � �
2 a2 = 1

� min(kgk� ; c)(kgk� � 1
2 min(kgk� ; c))

� sup
a> 0

akgk� � �
2 a2 = 1

�
1
2 kgk2

� :

D. Proof of Lem. 8: DORM is ODAFTRL and DORM + is DOOMD

Our derivations will make use of several facts about`p norms, summarized in the next lemma.

Lemma 19(`p norm facts). For p 2 (1; 1 ),  (w) = 1
2 kwk2

p, and any vectorsw; v 2 Rd and ~w0 2 Rd
+ ,

r  (w) = r 1
2 kwk2

p = sign( w)jw jp� 1=kwkp� 2
p (8)

hw; r  (w)i = kwk2
p = 2  (w)

 � (v ) = sup
w 2 Rd

hw; v i �  (w) = 1
2 kvk2

q for 1=q= 1 � 1=p (9)

r  � (v ) = sign( v )jv jq� 1=kvkq� 2
q

 �
+ (v ) = sup

w 2 Rd
+

hw; v i �  (w) = sup
w 2 Rd

hw; (v )+ i �  (w) = 1
2 k(v )+ k2

q

r  �
+ (v ) = argmax

w 2 Rd
+

hw; v i �  (w) = argmin
w 2 Rd

+

 (w) � h w; v i = ( v )q� 1
+ =k(v )+ kq� 2

q (10)

min
~w 2 Rd

+

B� ( ~w; ~w0) � h v ; ~w i = � (h~w0; r  ( ~w0)i �  ( ~w0) � sup
~w 2 Rd

+

h~w; r  ( ~w0) + v=� i �  ( ~w))

= � (h~w0; r  ( ~w0)i �  ( ~w0) �  �
+ (r  ( ~w0) + v=� ))

= � ( ( ~w0) �  �
+ (r  ( ~w0) + v=� ))

= � ( ( ~w0) � 1
2 k(r  ( ~w0) + v=� )+ k2

q)

= � ( 1
2 k ~w0k2

p � 1
2 k( ~w p� 1

0 =k ~w0kp� 2
p + v=� )+ k2

q):
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Proof. The fact (8) follows from the chain rule as

r j
1
2 kwk2

p = 1
2 r j (kwkp

p)2=p = 1
p (kwkp

p)(2=p) � 1r j kwkp
p = 1

p kwk2� p
p r j

P d
j 0=1 jw j 0jp

= 1
p kwk2� p

p psign(w j )jw j jp� 1 = sign( w j )jw j jp� 1=kwkp� 2
p :

The fact (9) follows from Lem. 18 ask�kq is the dual norm ofk�kp.

We now prove each claim in turn.

D.1. DORM is ODAFTRL

Fix p 2 (1; 2], � > 0, andt � 0. The ODAFTRL iterate with hint� h t +1 , W , Rd
+ ,  ( ~w) = 1

2 k ~wk2
p, loss subgradients

gODAFTRL
1:t � D = � r 1:t � D , and regularization parameter� takes the form

argmin
~w 2 Rd

+

� ( ~w) � h ~w; h t +1 + r 1:t � D i

= argmin
~w 2 Rd

+

 ( ~w) � h ~w; (h t +1 + r 1:t � D )=� i

= (( r 1:t � D + h t +1 )=� )q� 1
+ =k(( r 1:t � D + h t +1 )=� )+ kq� 2

q by (10)

= (( r 1:t � D + h t +1 )=� )q� 1
+ k(( r 1:t � D + h t +1 )=� )q� 1

+ kp� 2
p since(p � 1)(q � 1) = 1

= ~w t +1 k ~w t +1 kp� 2
p

proving the claim.

D.2. DORM+ is DOOMD

Fix p 2 (1; 2]and� > 0, and let( ~w t )t � 0 denote the unnormalized iterates generated by DORM+ with hintsh t , instantaneous
regretsr t , regularization parameter� , and hyperparameterq. Forp = q=(q � 1), let ( �w t )t � 0 denote the sequence generated
by DOOMD with �w0 = 0, hints� h t , W , Rd

+ ,  ( ~w) = 1
2 k ~wk2

p, loss subgradientsgDOOMD
t = � r t , and regularization

parameter� . We proceed by induction to show that, for eacht, �w t = ~w t k ~w t kp� 2
p .

Base case By assumption,�w0 = 0 = ~w0k ~w0kp� 2
p , con�rming the base case.

Inductive step Fix anyt � 0 and assume that for eachs � t, �w s = ~w sk ~w skp� 2
p . Then, by the de�nition of DOOMD

and our̀ p norm facts,

�w t +1 = argmin
�w 2 Rd

+

h� h t +1 + h t � r t � D ; �w i + B� ( �w ; �w t )

= argmin
�w 2 Rd

+

� ( ( �w) �  ( �w t ) � h �w � �w t ; r  ( �w t )i ) + h� h t +1 + h t � r t � D ; �w i

= argmin
�w 2 Rd

+

 ( �w) � h �w ; r  ( �w t ) + ( r t � D � h t + h t +1 )=� i

= argmin
�w 2 Rd

+

 ( �w) � h �w ; �w p� 1
t =k �w t kp� 2

p + ( r t � D � h t + h t +1 )=� i by (8)

= argmin
�w 2 Rd

+

 ( �w) � h �w ; ~w p� 1
t + ( r t � D � h t + h t +1 )=� i by the inductive hypothesis

= ( ~w p� 1
t + ( r t � D � h t + h t +1 )=� )q� 1

+ =k( ~w p� 1
t + ( r t � D � h t + h t +1 )=� )+ kq� 2

q by (10)

= ( ~w p� 1
t + ( r t � D � h t + h t +1 )=� )q� 1

+ k( ~w p� 1
t + ( r t � D � h t + h t +1 )=� )q� 1

+ kp� 2
p since(p � 1)(q � 1) = 1

= ~w t +1 k ~w t +1 kp� 2
p ;

completing the inductive step.
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E. Proof of Lem. 7: DORM and DORM+ are independent of�

We will prove the following more general result, from which the stated result follows immediately.

Lemma 20(DORM and DORM+ are independent of� ). Consider eitherDORM or DORM+ plays ~w t as a function of
� > 0, and suppose that for all time pointst, the observed subgradientgt and chosen hinth t +1 only depend on� through
(w s; � q� 1 ~w s; gs� 1; hs)s� t and (w s; � q� 1 ~w s; gs; hs)s� t respectively. Then if� q� 1 ~w0 is independent of the choice of
� > 0, then so is� q� 1 ~w t for all time pointst. As a result,w t / � q� 1 ~w t is also independent of the choice of� > 0 at all
time points.

Proof. We prove each result by induction ont.

E.1. Scaled DORM iterates� q� 1 ~w t are independent of�

Base case By assumption,h1 is independent of the choice of� > 0. Hence� q� 1 ~w1 = ( h1)q� 1
+ is independent of� > 0,

con�rming the base case.

Inductive step Fix anyt � 0, suppose� q� 1 ~w s is independent of the choice of� > 0 for all s � t, and consider

� q� 1 ~w t +1 = ( r 1:t � D + h t +1 )q� 1
+ :

Sincer 1:t � D depends on� only throughw s andgs for s � t � D , our � dependence assumptions for(gs; hs+1 )s� t ; the
fact that, for eachs, w s / � q� 1 ~w s; and our inductive hypothesis together imply that� q� 1 ~w t +1 is independent of� > 0.

E.2. Scaled DORM+ iterates� q� 1 ~w t are independent of�

Base case By assumption,� q� 1 ~w0 is independent of the choice of� > 0, con�rming the base case.

Inductive step Fix any t � 0 and suppose� q� 1 ~w s is independent of the choice of� > 0 for all s � t. Since
(p � 1)(q � 1) = 1 ,

� q� 1 ~w t +1 = ( � ~w p� 1
t + r t � D � h t + h t +1 )q� 1

+ = (( � q� 1 ~w t )p� 1 + r t � D � h t + h t +1 )q� 1
+ :

Sincer t � D depends on� only throughw t � D andgt � D , our � dependence assumptions for(gs; hs+1 )s� t ; the fact that, for
eachs � t, w s / � q� 1 ~w s; and our inductive hypothesis together imply that� q� 1 ~w t +1 is independent of� > 0.

F. Proof of Cor. 9: DORM and DORM+ regret

Fix any� > 0 andu 2 4 d� 1, consider the unnormalized DORM or DORM+ iterates~w t , and de�ne �w t = ~w t k ~w t kp� 2
p for

eacht. For either algorithm, we will bound our regret in terms of the surrogate losses

^̀
t ( ~w) , �h r t ; ~w i = hgt ; ~w i � h ~w; 1ihgt ; w t i

de�ned for ~w 2 Rd
+ . Since^̀

t (u) = hgt ; u � w t i , ^̀
t ( �w t ) = 0 , and each̀ t is convex, we have

RegretT (u) =
P T

t =1 ` t (w t ) � ` t (u) �
P T

t =1 hgt ; w t � ui =
P T

t =1
^̀
t ( �w t ) � ^̀

t (u):

For DORM, Lem. 8 implies that( �w t )t � 1 are ODFTRL iterates, so the ODFTRL regret bound (Thm. 5) and the fact that is
1-strongly convex with respect tok�k =

p
p � 1k�kp (see Shalev-Shwartz, 2007, Lemma 17) withk�k� = 1p

p� 1 k�kq imply

RegretT (u) � �
2 kuk2

p + 1
� (p� 1)

P T
t =1 b t;q :

Similarly, for DORM+, Lem. 8 implies that( �w t )t � 0 are DOOMD iterates with�w0 = 0, so the DOOMD regret bound
(Thm. 6) and the strong convexity of yield

RegretT (u) � B �
2 k�k 2

p
(u; 0) + 1

� (p� 1)

P T
t =1 b t;q = �

2 kuk2
p + 1

� (p� 1)

P T
t =1 b t;q :
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Since, by Lem. 7, the choice of� does not impact the iterate sequences played by DORM and DORM+, we may take the
in�mum over � > 0 in these regret bounds. The second advertised inequality comes from the identity1

p� 1 = q � 1 and the

norm equivalence relationskvkq � d1=qkvk1 andkvkp � k vk1 = 1 for v 2 Rd, as shown in Lem. 21 below. The �nal
claim follows as

inf q0� 2 d2=q0
(q0 � 1) = inf q0� 2 22 log 2 (d)=q0

(q0 � 1) � 22 log 2 (d)=(2 log 2 (d)) (2 log2(d) � 1) = 2(2 log2(d) � 1)

sinced > 1.

Lemma 21(Equivalence ofp-norms). If x 2 Rn andq > q0 � 1, thenkxkq � k xkq0 � n(1=q0� 1=q) kxkq.

Proof. To showkxkq � k xkq0 for q > q0 � 1, suppose without loss of generality thatkxkq0 = 1 . Then,kxkq
q =

P n
i =1 jx i jq �

P n
i =1 jx i jq

0
= kxkq0

q0 = 1 . Hencekxkq � 1 = kxkq0.

For the inequalitykxkq0 � n1=q0� 1=qkxkq, applying Ḧolder's inequality yields

kxkq0

q0 =
P n

i =1 1 � jx i jq
0

� (
P n

i =1 1)1� q0

q (
P n

i =1 jx i jq)
q0

q = n1� q0

q kxkq0

q ;

sokxkq0 � n1=q0� 1=qkxkq.

G. Proof of Thm. 10: ODAFTRL regret

Since ODAFTRL is an instance of OAFTRL with~gt +1 = h t +1 �
P t

s= t � D +1 gs, the ODAFTRL result follows immediately
from the OAFTRL regret bound, Thm. 14.

H. Proof of Thm. 11: DUB Regret

Fix anyu 2 W . By Thm. 10, ODAFTRL admits the regret bound

RegretT (u) � � T  (u) +
P T

t =1 min( 1
� t

b t;F ; at;F ):

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 22(DUB-style tuning bound). Fix any� > 0 and any non-negative sequences(at )T
t =1 , (bt )T

t =1 . If

� �
t +1 , 2 maxj � t � D � 1 aj � D +1: j +

q P t � D
i =1 a2

i + 2 �b i � �� t +1 for each t

then
P T

t =1 min(b2
t =� t ; at ) � � �

T + D +1 � �� T + D +1 :

Since� T � � T + D +1 , the result now follows by settingat = at;F andbt = b t;F , so that

RegretT (u) � � T  (u) + �� T + D +1 � ( (u) + � )� T + D +1 :

H.1. Proof of Lem. 22: DUB-style tuning bound

We prove the claim

� t ,
P t

i =1 min(bi =� i ; ai ) � � �
t + D +1 � �� t + D +1

by induction ont.

Base case For t 2 [D + 1] ,

P t
i =1 min(bi =� i ; ai ) � a1:t � 1 + at � 2 maxj � t � 1 aj � D +1: j +

q P t
i =1 a2

i + 2 �b i = � �
t + D +1 � �� t + D +1

con�rming the base case.
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Inductive step Now �x any t + 1 � D + 2 and suppose that

� i � � �
i + D +1 � �� i + D +1

for all 1 � i � t . We apply this inductive hypothesis to deduce that, for each0 � i � t,

� 2
i +1 � � 2

i = (� i + min( bi +1 =� i +1 ; ai +1 ))2 � � 2
i = 2� i min(bi +1 =� i +1 ; ai +1 ) + min( bi +1 =� i +1 ; ai +1 )2

= 2� i � D min(bi +1 =� i +1 ; ai +1 ) + 2(� i � � i � D ) min( bi +1 =� i +1 ; ai +1 ) + min( bi +1 =� i +1 ; ai +1 )2

= 2� i � D min(bi +1 =� i +1 ; ai +1 ) + 2
iX

j = i � D +1

min(bj =� j ; aj ) min( bi +1 =� i +1 ; ai +1 ) + min( bi +1 =� i +1 ; ai +1 )2

� 2�� i +1 min(bi +1 =� i +1 ; ai +1 ) + 2 ai � D +1: i min(bi +1 =� i +1 ; ai +1 ) + a2
i +1

� 2�b i +1 + a2
i +1 + 2ai � D +1: i min(bi +1 =� i +1 ; ai +1 ):

Now, we sum this inequality overi = 0 ; : : : ; t, to obtain

� 2
t +1 �

P t
i =0 (2�b i +1 + a2

i +1 ) + 2
P t

i =0 ai � D +1: i min(bi +1 =� i +1 ; ai +1 )

=
P t +1

i =1 (2�b i + a2
i ) + 2

P t +1
i =1 ai � D :i � 1 min(bi =� i ; ai )

�
P t +1

i =1 (a2
i + 2 �b i ) + 2 max j � t aj � D +1: j

P t +1
i =1 min(bi =� i ; ai )

=
P t +1

i =1 (a2
i + 2 �b i ) + 2� t +1 maxj � t aj � D +1: j :

Solving this quadratic inequality and applying the triangle inequality, we have

� t +1 � maxj � t aj � D +1: j + 1
2

q
(2 maxj � t aj � D +1: j )2 + 4

P t +1
i =1 a2

i + 2 �b i

� 2 maxj � t aj � D +1: j +
q P t +1

i =1 a2
i + 2 �b i = � �

t + D +2 � �� t + D +2 :

I. Proof of Thm. 12: AdaHedgeD Regret

Fix anyu 2 W . Since the AdaHedgeD regularization sequence(� t )t � 1 is non-decreasing, Thm. 14 gives the regret bound

RegretT (u) � � T  (u) +
P T

t =1 � t = � T  (u) + �� T + D +1 � ( (u) + � )� T + D +1 ;

and the proof of Thm. 14 gives the upper estimate (5):

� t � min
�

b t;F

� t
; at;F

�
for all t 2 [T]: (11)

Hence, it remains to bound� T + D +1 . Since� 1 = � � � = � D +1 = 0 and� (� t +1 � � t ) = � t � D for t � D + 1 ,

�� 2
T + D +1 =

P T + D
t =1 � (� 2

t +1 � � 2
t ) =

P T + D
t = D +1

�
� (� t +1 � � t )2 + 2 � (� t +1 � � t )� t

�

=
P T

t =1

�
� 2

t =� + 2 � t � t + D
�

by the de�nition of � t +1

=
P T

t =1

�
� 2

t =� + 2 � t � t + 2 � t (� t + D � � t )
�

�
P T

t =1

�
� 2

t =� + 2 � t � t + 2 � t maxt 2 [T ](� t + D � � t )
�

=
P T

t =1

�
� 2

t =� + 2 � t � t
�

+ 2 � T + D +1 maxt 2 [T ] � t � D :t � 1

�
P T

t =1

�
a2

t;F =� + 2b t;F
�

+ 2 � T + D +1 maxt 2 [T ] at � D :t � 1;F by (11).

Solving the above quadratic inequality for� T + D +1 and applying the triangle inequality, we �nd

�� T + D +1 � maxt 2 [T ] at � D :t � 1;F + 1
2

q
4(maxt 2 [T ] at � D :t � 1;F )2 + 4

P T
t =1 a2

t;F + 2 � b t;F

� 2 maxt 2 [T ] at � D :t � 1;F +
q P T

t =1 a2
t;F + 2 � b t;F :
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J. Proof of Thm. 13: Learning to hint regret

We begin by bounding the hinting problem regret. Since DORM+ is used for the hinting problem, the following result is an
immediate corollary of Cor. 9.

Corollary 23 (DORM+ hinting problem regret). With convex lossesl t (! ) = f t (H t ! ) and no meta-hints, theDORM+
hinting problem iterates! t satisfy, for eachv 2 4 m � 1,

HintRegretT (v) ,
P T

t =1 l t (! t ) �
P T

t =1 l t (v) �
q

m 2=q (q� 1)
2

P T
t =1 � t; 1 for

� t; 1 =

(
huber(k

P t
s= t � D � sk1 ; k� t � D k1 ); for t < T

1
2 k

P t
s= t � D � sk2

1 ; for t = T

where � t , 1h
 t ; ! t i � 
 t for 
 t 2 @lt (! t ) is theinstantaneous hinting problem regret.

If, in addition,q = argmin q0� 2 m2=q0
(q0 � 1), thenHintRegretT (v) �

q
(2 log2(m) � 1)

P T
t =1 � t; 1 .

Our next lemma, proved in App. J.1, provides an interpretable bound for each� t; 1 term in terms of the hinting problem
subgradients(
 t )t � 1.

Lemma 24(Hinting problem subgradient regret bound). Under the notation and assumptions of Cor. 23,

� t; 1 �

(
huber(� t ; � t ) if t < T
1
2 � t if t = T

; for

� t , 4(D + 1)
P t

s= t � D k
 sk2
1 and

� t , 4k
 t � D k1
P t

s= t � D k
 sk1 :

Now �x any u 2 W . We invoke Assump. 1, Cor. 23, and Lem. 24 in turn to bound the base problem regret

RegretT (u) =
P T

t =1 ` t (w t ) � ` t (u)

� C0(u) + C1(u)
q P T

t =1 f t (h t (! t )) by Assump. 1

� C0(u) + C1(u)

r

inf v2 V
P T

t =1 f t (h t (v)) +
q

(2 log2(m) � 1)
P T

t =1 � t; 1 by Cor. 23

� C0(u) + C1(u)

r

inf v2 V
P T

t =1 f t (h t (v)) +
q

(2 log2(m) � 1)( 1
2 � T +

P T � 1
t =1 huber(� t ; � t )) by Lem. 24.

The advertised bound now follows from the triangle inequality.

J.1. Proof of Lem. 24: Hinting problem subgradient regret bound

Fix anyt 2 [T]. The triangle inequality implies that

k� t k1 = k
 t � 1h! t ; 
 t ik 1 � k 
 t k1 + jh! t ; 
 t ij � 2k
 t k1

since! t 2 4 m � 1. We repeatedly apply this �nding in conjunction with Jensen's inequality to conclude

k
P t

s= t � D � sk2
1 � (D + 1)

P t
s= t � D k� sk2

1 � 4(D + 1)
P t

s= t � D k
 sk2
1 and

k� t � D k1 k
P t

s= t � D � sk1 � k � t � D k1
P t

s= t � D k� sk1 � 4k
 t � D k1
P t

s= t � D k
 sk1 :

K. Examples: Learning to Hint with DORM+ and AdaHedgeD

By Thm. 12, AdaHedgeD satis�es Assump. 1 withf t (h t ) = kr t k� kh t �
P t

s= t � D r sk� �
a2

t;F +2 � b t;F

diam( W )2 +2 � , C1(u) =
p

diam(W )2 + 2 � , andC0(u) = 2 diam( W ) maxt 2 [T ]
P t � 1

s= t � D kgsk� .
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By Cor. 9, DORM+ satis�es Assump. 1 withf t (h) = kr t � D + h t +1 � h t kqkh �
P t

s= t � D r skq, C0(u) = 0 , andC1(u) =q
ku k2

p

2(p� 1) .

These choices give rise to the hinting losses

lDORM+
t (! ) = kr t � D + h t +1 � h t kqkH t ! �

P t
s= t � D r skq and (12)

lAdaHedgeD
t (! ) = kgt kqkH t ! �

P t
s= t � D gskq when k�k� = k�kq for q 2 [1; 1 ]:

The following lemma, proved in App. K.1, identi�es subgradients of these hinting losses.

Lemma 25(Hinting loss subgradient). If l t (! ) = k�gt kqkH t ! � v t kq for some�gt ; v t 2 Rd andH t 2 Rd� m , then


 t =

( k �g t kq

kH t ! � v t kq � 1
q

H >
t jH t ! � v t jq� 1 sign(H t ! � v t ) if q < 1

k�gt k1 sign(� )H >
t ek if q = 1

2 @lt (! ) (13)

for k = argmax j 2 [d](H t ! � v t ) j and� = max j 2 [d](H t ! � v t ) j .

Our next lemma, proved in App. K.2, bounds the1 -norm of this hinting loss subgradient in terms of the base problem
subgradients.

Lemma 26(Hinting loss subgradient bound). Under the assumptions and notation of Lem. 25, the subgradient
 t satis�es
k
 t k1 � d1=qk�gt kqkH t k1 for kH t k1 the maximum absolute entry ofH t .

K.1. Proof of Lem. 25: Hinting loss subgradient

The result follows immediately from the chain rule and the following lemma.

Lemma 27(Subgradients ofp-norms). Supposew 2 Rd andk 2 argmaxj 2 [d] jw j j. Then

@kwkp 3

8
>><

>>:

jw jp � 1

kw kp � 1
p

sign(w) if kwkp 6= 0 ; p 2 [1; 1 )

ek sign(w k ) if kwkp 6= 0 ; p = 1
0 if kwkp = 0

:

Proof. Since0 is a minimizer ofk�kp, we havekukp � k 0kp + h0; u � 0i for anyu 2 Rd and hence0 2 @k0kp.

For p 2 [1; 1 ), by the chain rule, ifkwkp 6= 0,

@j kwkp = @j
� P n

k=1 jw k jp
� 1=p

= 1
p

� P n
k=1 jw k jp

� (1=p) � 1
pjw j jp� 1 sign(w j )

=
� � P n

k=1 jw k jp
� 1=p

� � (p� 1)
jw j jp� 1 sign(w j )

=
�

jw j j
kw kp

� p� 1
sign(w j ):

Forp = 1 , we have thatkwk1 = max j 2 [n ] jw j j. By the Danskin-Bertsekas Theorem (Danskin, 2012) for subdifferentials,
@kwk1 = conv f[ @jw j j s.t. jw j j = kwk1 g = conv f[ sign(w j )ej s.t. jw j j = kwk1 g, whereconv is the
convex hull operation.

K.2. Proof of Lem. 26: Hinting loss subgradient bound

If q 2 [1; 1 ), we have

k
 t k1 =










k �g t kq

kH t ! �
P t

s = t � D gs kq � 1
q

H >
t jH t ! �

P t
s= t � D gs jq� 1 sign(H t ! �

P t
s= t � D gs)










1

� k �g t kq max j 2 [d ] kH t ej kq

kH t ! �
P t

s = t � D gs kq � 1
q

kH t ! �
P t

s= t � D gskq� 1
q by Hölder's inequality for(q; p)

� d1=qk�gt kqkH t k1 by Lem. 21.
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If q = 1 , we have

k
 t k1 =



 k�gt k1 sign(� )H >

t ek





1 = I [� 6= 0] k�gt k1 kH t k1 � d1=qk�gt k1 kH t k1 :

L. Experiment Details

L.1. Subseasonal Forecasting Application

We apply the online learning techniques developed in this paper to the problem of adaptive ensembling for subseasonal
weather forecasting. Subseasonal forecasting is the problem predicting meteorological variables, often temperature and
precipitation, 2-6 weeks in advance. These mid-range forecasts are critical for managing water resources and mitigating
wild�res, droughts, �oods, and other extreme weather events (Hwang et al., 2019). However, the subseasonal forecasting
task is notoriously dif�cult due to the joint in�uences of short-term initial conditions and long-term boundary conditions
(White et al., 2017).

To improve subseasonal weather forecasting capabilities, the US Department of Reclamation launched the Sub-Seasonal
Climate Forecast Rodeo competition (Nowak et al., 2020), a yearlong real-time forecasting competition for the Western
United States. Our experiments are based on Flaspohler et al. (2021), a snapshot of public subseasonal model forecasts
including both physics-based and machine learning models. These models were developed for the subseasonal forecasting
challenge and make semimonthly forecasts for the contest period (19 October 2019 – 29 September 2020).

To expand our evaluation beyond the subseasonal forecasting competition, we used the forecasts in Flaspohler et al. (2021)
for analogous yearlong periods (26 semi-monthly dates starting from the last Wednesday in October) beginning in Oct. 2010
and ending in Sep. 2020. Throughout, we refer to the yearlong period beginning in Oct. 2010 – Sep. 2011 as the 2011 year
and so on for each subsequent year. For each forecast datet, the models in Flaspohler et al. (2021) were trained only on data
available at timet and model hyper-parameters were tuned to optimize average RMSE loss on the 3-year period preceding
the forecast datet. For a few of the forecast dates, one or more models had missing forecasts; only dates for which all
models have forecasts were used in evaluation.

L.2. Problem De�nition

Denote the set ofd = 6 input models fM 1; : : : M dg with labels: llr (Model1), multillr (Model2),
tuned catboost (Model3),tuned cfsv2 (Model4),tuned doy (Model5) andtuned salient fri (Model6).
On each semimonthly forecast date, each modelM i makes a prediction for each of two meteorological variables (cumulative
precipitation and average temperature over 14 days) and two forecasting horizons (3-4 weeks and 5-6 weeks). For the 3-4
week and 5-6 horizons respectively, the forecaster experiences a delay ofD = 2 andD = 3 forecasts. Each model makes a
total ofT = 26 semimonthly forecasts for these four tasks.

At each timet, each input modelM i produces a prediction atG = 514 gridpoints in the Western United States:x c
t;i 2

RG = M i (t) for taskc at timet. Let X c
t 2 RG� d be the matrix containing each input model's predictions as columns. The

true meterological outcome for taskc is y c
t 2 RG . As online learning is performed for each task separately, we drop the task

superscriptc in the following.

At each timestep, the online learner makes a forecast predictionŷ t by playingw t 2 W = 4 d� 1, corresponding to a convex
combination of the individual models:̂y t = X t w t . The learner then incurs a loss for the playw t according to the root
mean squared (RMSE) error over the geography of interest:

` t (w t ) =
1

p
G

ky t � X t w t k2;

@t̀ (w t ) 3 gt =

(
X >

t (X t w t � y t )p
GkX t w t � y t k2

if X t w t � y t 6= 0

0 if X t w t � y t = 0

Our objective for the subseasonal forecasting application is to produce an adaptive ensemble forecast that competes with the
best input model over the yearlong period. Hence, in our evaluation, we take the competitor set to be the set of individual
modelsU = f ei : i 2 [d]g.
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by Cor. 29. If� t > 0,

� t = min( � (1)
t ; � (2)

t ; � (3)
t )+ for

� (1)
t = Ft +1 (w t ; � t ) � Ft +1 ( �w t ; � t )

= � t ln(
P

j 2 [d] w t;j exp((h t;j � gt � D :t;j )=� t )) + hgt � D :t � h t ; w t i

= � t ln(
P

j 2 [d] w t;j exp((h t;j � gt � D :t;j � c� )=� t )) + hgt � D :t � h t ; w t i + c� ;

� (2)
t = hgt ; w t � �w t i ; and

� (3)
t = Ft +1 (ŵ t ; � t ) � Ft +1 ( �w t ; � t ) + hgt ; w t � ŵ t i

= � t ln(
P

j 2 [d] ŵ t;j exp((ĥ t;j � gt � D :t;j )=� t )) + hgt � D :t � ĥ t ; ŵ t i + hgt ; w t � ŵ t i

= � t ln(
P

j 2 [d] ŵ t;j exp((ĥ t;j � gt � D :t;j � ĉ� )=� t )) + hgt � D :t � ĥ t ; ŵ t i + ĉ� + hgt ; w t � ŵ t i :

If � t = 0 ,

� t = min( � (1)
t ; � (2)

t ; � (3)
t )+ for

� (1)
t = hg1:t ; w t i � min j 2 [d] g1:t;j ;

� (2)
t = hgt ; w t � �w t i ; and

� (3)
t = hg1:t ; ŵ t i � min j 2 [d] g1:t;j + hgt ; w t � ŵ t i :

Leveraging these results, we present the pseudocode for the AdaHedgeD and DUB instantiations of ODAFTRL in Algo-
rithm 1.

N.2. DORM and DORM+

The DORM and DORM+ algorithms presented in the experiments are implementations of ODAFTRL and DOOMD
respectively that play iterates inW , 4 d� 1 using the default value� = 1 . Both algorithms use ap-norm regularizer
 = 1

2 k�k2
p, which is1-strongly convex with respect tok�k =

p
p � 1k�kp (see Shalev-Shwartz, 2007, Lemma 17) with

k�k� = 1p
p� 1 k�kq. For the paper experiments, we choose the optimal valueq = inf q0� 2 d2=q0

(q0� 1) to obtainln(d) scaling
in the algorithm regret; ford = 6 , p = q = 2 . The update equations for each algorithm are given in the main text by DORM
and DORM+ respectively. The optimistic hinters provide delayed gradient hints~gt , which are then used to compute regret
gradient hints~r t , where~r t = h~gt ; w t i � ~gt andh t =

P t � 1
s= t � D ~r s + h~gt ; w t � 1i � ~gt .

N.3. Adaptive Hinting

For the adaptive hinting experiments, we use the DORM+ as both the base and hint learner. For the hint learner with DORM
base algorithm, the hint loss function is given by (12) withq = 2 . The plays of the online hinter! t are used to generate the
hintsh t for the base algorithm using the hint matrixH t 2 Rd� m . Thej -th column ofH t contains hinterj 's predictions for
the cumulative missing regret subgradientsr t � D :t . The �nal hint for the base learner ish t = H t ! t . Psuedo-code for the
adaptive hinter is given in Algorithm 2.

N.4. Proof of Lem. 28: Negative entropy properties

The expression of the Fenchel conjugate for� > 0 is derived by solving an appropriate constrained convex optimization
problem forw = 4 d� 1, as shown in Orabona (2019, Section 6.6). The value ofw � (�; � ) 2 @(� ) �

W (� ) uses the properties
of the Fenchel conjugate (Rockafellar, 1970; Orabona, 2019, Theorem 5.5) and is shown in Orabona (2019, Theorem 6.6).
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Algorithm 1 ODAFTRL with W = 4 d� 1,  (w) =
P d

j =1 w j ln w j + ln( d), delayD � 0, and tuning strategytuning

1: Parameter� = supu 24 d � 1
 (u) = ln( d)

2: Initial regularization weight:� 0 = 0
3: if tuning is DUB then
4: Initial regularization sum:� 0 = 0
5: Initial maximum:amax = 0
6: end if
7: Initial subgradient sum:g1:1 = 0 2 Rd

8: Dummy losses and iterates:g� D = � � � = g0 = 0 2 Rd, w � D = � � � = w0 = 0 2 Rd

9: for t = 1 ; : : : ; T do
10: Receive hinth t 2 Rd

11: Outputw t = argmin w 2 W Ft � D (w ; � t ) + hh t ; w i as in Cor. 29
12: Receivegt � D 2 Rd and payhgt � D ; w t � D i
13: Update subgradient sumg1:t � D = g1:t � D � 1 + gt � D

14: if tuning is AdaHedgeDthen
15: Compute the auxiliary play�w t � D = argmin w 2 W Ft � D +1 (w ; � t � D ) as in Cor. 29
16: Compute the auxiliary regret term� (1)

t � D = Ft � D +1 (w t � D ; � t � D ) � Ft � D +1 ( �w t � D ; � t � D ) as in Prop. 30

17: Compute the drift term� (2)
t � D = hgt � D ; w t � D � �w t � D i

18: Compute the auxiliary hint (14)̂h t � D , gt � 2D :t � D + min( kg t � D k �

kh t � D � g t � 2D : t � D k �
; 1)(h t � D � gt � 2D :t � D )

19: Compute the auxiliary plaŷw t � D = argmin w 2 W Ft � D +1 (w ; � t � D ) + ĥh t � D � gt � 2D :t � D ; w i as in Cor. 29
20: Compute the regret term� (3)

t � D = Ft � D +1 (ŵ t � D ; � t � D ) � Ft � D +1 ( �w t � D ; � t � D ) + hgt � D ; w t � D � ŵ t � D i as
in Prop. 30

21: Update� t +1 = � t + 1
� min( � (1)

t � D ; � (2)
t � D ; � (3)

t � D )+ as in (3)
22: else iftuning is DUB then
23: Computeat � D;F = 2 min

�
kgt � D k1 ; kh t � D �

P t � D
s= t � 2D gsk1

�
as in (2)

24: Computeb t � D;F = 1
2 kh t � D �

P t � D
s= t � 2D gsk2

1 � 1
2 (kh t � D �

P t � D
s= t � 2D gsk1 � k gt � D k1 )2

+ as in (2)
25: Update� t +1 = � t + a2

t � D;F + 2 � b t � D;F

26: Update maximumamax = max( amax ; at � 2D :t � D � 1;F )
27: Update� t +1 = 1

� (2amax +
p

� t +1 ) as in DUB
28: end if
29: end for

N.5. Proof of Prop. 30: AdaHedgeD� t

First suppose� t > 0. The �rst term in themin of AdaHedgeD's� t setting is derived as follows:

� (1)
t , Ft +1 (w t ; � t ) � Ft +1 ( �w t ; � t ) by de�nition (3)

= Ft � D (w t ; � t ) + hh t ; w t i + hgt � D :t � h t ; w t i � inf w 2 W Ft +1 (w ; � t ) by de�nition of �w t

= Ft � D (w t ; � t ) + hh t ; w t i + hgt � D :t � h t ; w t i + � t  �
W (� g1:t =� t ) by Cor. 29

= � t  �
W (� g1:t =� t ) � � t  �

W (( � h t � g1:t � D � 1)=� t ) + hgt � D :t � h t ; w t i

becausew t 2 argminw 2 W Ft � D (w t ; � t ) + hh t ; w t i

= � t (ln(
P d

j =1 exp(� g1:t;j =� t )) � � t (ln(
P d

j =1 exp((� g1:t � D � 1;j � h t;j )=� t )) + hgt � D :t � h t ; w t i by Lem. 28

= � t ln
�

P d
j =1

exp( � g1: t;j =� t )
P d

j =1 exp(( � g1: t � D � 1 ;j � h t;j )=� t )

�
+ hgt � D :t � h t ; w t i

= � t ln
�

P d
j =1

exp(( � g1: t � D � 1 ;j � h t;j )=� t ) exp(( h t;j � g t � D : t;j )=� t )
P d

j =1 exp(( � g1: t � D � 1 ;j � h t;j )=� t )

�
+ hgt � D :t � h t ; w t i

= � t ln
� P d

j =1 w t;j exp((h t;j � gt � D :t;j )=� t )
�

+ hgt � D :t � h t ; w t i by the expression forw t in Cor. 29.

The expression for the third term in themin of AdaHedgeD's� t setting follows from identical reasoning.
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Algorithm 2 Learning to hint with DORM+ (q=2) hint learner, DORM+ base learner, and delayD � 0

1: Subgradient vector:g� D ; � � � g0 = 0 2 Rd

2: Meta-subgradient vector:
 � D ; � � � 
 0 = 0 2 Rm

3: Initial instantaneous regret:r � D = 0 2 Rd

4: Initial instantaneous meta-regret:� � D = 0 2 Rm

5: Initial hint h0 = 0 2 Rd

6: Initial orthant meta-vector:~! 0 = 0 2 Rm

7: for t = 1 ; : : : ; T do
8: // Update online hinter using DORM+ with q = 2
9: Find optimal unnormalized hint combination vector~! t = max( 0; ~! t � 1 + � t � D � 1)

10: Normalize:! t =

(
1=m if ~! t = 0
~! t =h1; ~! t i otherwise

11: Receive hint matrix:H t 2 Rd� m in which each column is a hint for
P t

s= t � D r s

12: Output hinth t = H t ! t

13: // Update DORM+ base learner and get next play
14: Outputw t = DORM+(gt � D � 1; h t )
15: Receivegt � D 2 Rd and payhgt � D ; w t � D i
16: Compute instantaneous regretr t � D = 1hgt � D ; w t � D i � gt � D

17: Compute hint meta-subgradient
 t � D 2 @lt � D (! t � D ) 2 Rm as in (13)
18: Compute instantaneous hint regret� t � D = 1h
 t � D ; ! t � D i � 
 t � D

19: end for

Now suppose� t = 0 . We have

� (1)
t , Ft +1 (w t ; � t ) � Ft +1 ( �w t ; � t ) by de�nition (3)

= hg1:t ; w t i � inf w 2 W Ft +1 (w ; � t ) by de�nition of �w t

= hg1:t ; w t i � min j 2 [d] g1:t;j by Cor. 29.

Identical reasoning yields the advertised expression for the third term.

O. Extension to Variable and Unbounded Delays

In this section we detail how our main results generalize to the case of variable and potentially unbounded delays. For each
time t, we de�nelast(t) as the largest indexs for whichg1:s is observable at timet (that is, available for constructingw t )
and �rst(t) as the �rst times at whichg1:t is observable at times (that is, available for constructingw s).

O.1. Regret of DOOMD with variable delays

Consider the DOOMD variable-delay generalization

w t +1 = argmin
w 2 W

hglast( t )+1: last( t +1) + h t +1 � h t ; w i + B� (w ; w t ) with h0 , 0 and arbitrary w0:

(DOOMD with variable delays)

We �rst note that DOOMD with variable delays is an instance of SOOMD respectively with a “bad” choice of optimistic
hint ~gt +1 that deletes the unobserved loss subgradientsglast( t +1)+1: t .

Lemma 31(DOOMD with variable delays is SOOMD with a bad hint). DOOMD with variable delaysis SOOMDwith
~gt +1 = ~gt + glast( t )+1: last( t +1) � gt + h t +1 � h t = h t +1 +

P t
s=1 glast(s)+1: last(s+1) � gs: = h t +1 � glast( t +1)+1: t :

The following result now follows immediately from Thm. 4 and Lem. 31.

Theorem 32(Regret of DOOMD with variable delays). If  is differentiable andhT +1 , glast(T +1)+1: T , then, for all
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u 2 W , theDOOMD with variable delaysiteratesw t satisfy

RegretT (u) � B � (u; w0) + 1
�

P T
t =1 b2

t;O ; for

b2
t;O , huber(kh t �

P t
s= last( t )+1 gsk� ; kglast( t )+1: last( t +1) + h t +1 � h t k� ):

O.2. Regret of ODAFTRL with variable delays

Consider the ODAFTRL variable-delay generalization

w t +1 = argmin
w 2 W

hg1:last( t +1) + h t +1 ; w i + � t +1  (w): (ODAFTRL with variable delays)

Since ODAFTRL with variable delays is an instance of OAFTRL with~gt +1 = h t +1 �
P t

s= last( t +1)+1 gs, the following
result follows immediately from the OAFTRL regret bound, Thm. 14.

Theorem 33(Regret of ODAFTRL with variable delays). If  is nonnegative and� t is non-decreasing int, then,8u 2 W ,
theODAFTRL with variable delaysiteratesw t satisfy

RegretT (u) � � T  (u) +
P T

t =1 min( b t;F

� t
; at;F ) with

b t;F , huber(kh t �
P t

s= last( t )+1 gsk� ; kgt k� ) and (15)

at;F , diam(W ) min
�
kh t �

P t
s= last( t )+1 gsk; kgt k�

�
:

O.3. Regret of DUB with variable delays

Consider the DUB variable-delay generalization

�� t +1 = 2 max
j � last( t +1) � 1

alast( j +1)+1: j;F +
q P last( t +1)

i =1 a2
i;F + 2 � b i;F : (DUB with variable delays)

Theorem 34(Regret of DUB with variable delays). Fix � > 0, and, forat;F ; b t;F as in (15), consider theDUB with
variable delayssequence. If is nonnegative, then, for allu 2 W , theODAFTRL with variable delaysiteratesw t satisfy

RegretT (u) �
�  (u )

� + 1
�

�
2 maxt 2 [T ] alast( t )+1: t � 1;F +

q P T
t =1 a2

t;F + 2 � b t;F
�

Proof. Fix anyu 2 W . By Thm. 33, ODAFTRL with variable delays admits the regret bound

RegretT (u) � � T  (u) +
P T

t =1 min( 1
� t

b t;F ; at;F ):

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 35 (DUB with variable delays-style tuning bound). Fix any � > 0 and any non-negative sequences(at )T
t =1 ,

(bt )T
t =1 . If (� t )t � 1 is non-decreasing and

� �
t +1 , 2 maxj � last( t +1) � 1 alast( j +1)+1: j +

q P last( t +1)
i =1 a2

i + 2 �b i � �� t +1 for each t

then
P T

t =1 min(bt =� t ; at ) � � �
�rst (T ) � �� �rst (T ) :

SinceT � �rst (T), � T � � �rst (T ) , andlast(�rst (T)) = T, the result now follows by settingat = at;F andbt = b t;F , so
that

RegretT (u) � � T  (u) + �� �rst (T ) � ( (u) + � )� �rst (T ) :
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O.4. Proof of Lem. 35: DUB with variable delays-style tuning bound

We prove the claim

� t ,
P t

i =1 min(bi =� i ; ai ) � � �
�rst ( t ) � �� �rst ( t )

by induction ont.

Base case For t = 1 , since last(�rst (t)) � t, we have

P t
i =1 min(bi =� i ; ai ) � a1 � 2 maxj � t � 1 alast( j +1)+1: j +

q P t
i =1 a2

i + 2 �b i

� 2 maxj � last( �rst ( t )) � 1 alast( j +1)+1: j +
q P last( �rst ( t ))

i =1 a2
i + 2 �b i = � �

�rst ( t ) � �� �rst ( t )

con�rming the base case.

Inductive step Now �x any t + 1 � 2 and suppose that

� i � � �
�rst ( i ) � �� �rst ( i )

for all 1 � i � t . Since�rst (last(i + 1)) � i + 1 and� s is non-decreasing ins, we apply this inductive hypothesis to deduce
that, for each0 � i � t,

� 2
i +1 � � 2

i = (� i + min( bi +1 =� i +1 ; ai +1 ))2 � � 2
i = 2� i min(bi +1 =� i +1 ; ai +1 ) + min( bi +1 =� i +1 ; ai +1 )2

= 2� last( i +1) min(bi +1 =� i +1 ; ai +1 ) + 2(� i � � last( i +1) ) min( bi +1 =� i +1 ; ai +1 ) + min( bi +1 =� i +1 ; ai +1 )2

= 2� last( i +1) min(bi +1 =� i +1 ; ai +1 ) + 2
iX

j = last( i +1)+1

min(bj =� j ; aj ) min( bi +1 =� i +1 ; ai +1 ) + min( bi +1 =� i +1 ; ai +1 )2

� 2�� �rst ( last( i +1)) min(bi +1 =� i +1 ; ai +1 ) + 2 alast( i +1)+1: i min(bi +1 =� i +1 ; ai +1 ) + a2
i +1

� 2�� i +1 min(bi +1 =� i +1 ; ai +1 ) + 2 alast( i +1)+1: i min(bi +1 =� i +1 ; ai +1 ) + a2
i +1

� 2�b i +1 + a2
i +1 + 2alast( i +1)+1: i min(bi +1 =� i +1 ; ai +1 ):

Now, we sum this inequality overi = 0 ; : : : ; t, to obtain

� 2
t +1 �

P t
i =0 (2�b i +1 + a2

i +1 ) + 2
P t

i =0 alast( i +1)+1: i min(bi +1 =� i +1 ; ai +1 )

=
P t +1

i =1 (2�b i + a2
i ) + 2

P t +1
i =1 alast( i +1): i � 1 min(bi =� i ; ai )

�
P t +1

i =1 (a2
i + 2 �b i ) + 2 max j � t alast( j +1)+1: j

P t +1
i =1 min(bi =� i ; ai )

=
P t +1

i =1 (a2
i + 2 �b i ) + 2� t +1 maxj � t alast( j +1)+1: j :

We now solve this quadratic inequality, apply the triangle inequality, and invoke the relationlast(�rst (t + 1)) � t + 1 to
conclude that

� t +1 � maxj � t alast( j +1)+1: j + 1
2

q
(2 maxj � t alast( j +1)+1: j )2 + 4

P t +1
i =1 a2

i + 2 �b i

� 2 maxj � t alast( j +1)+1: j +
q P t +1

i =1 a2
i + 2 �b i

� 2 maxj � last( �rst ( t +1)) � 1 alast( j +1)+1: j +
q P last( �rst ( t +1))

i =1 a2
i + 2 �b i = � �

�rst ( t +1) � �� �rst ( t +1) :

O.5. Regret of AdaHedgeD with variable delays

Consider the AdaHedgeD variable-delay generalization

� t +1 = 1
�

P last( t +1)
s=1 � s for � t de�ned in (3). (AdaHedgeD with variable delays)
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Theorem 36(Regret of AdaHedgeD with variable delays). Fix � > 0, and consider theAdaHedgeD with variable delays
sequence. If is nonnegative, then, for allu 2 W , theODAFTRL with variable delaysiterates satisfy

RegretT (u) �
�  (u )

� + 1
�

�
2 maxt 2 [T ] alast( t +1)+1: t;F +

q P T
t =1 a2

t;F + 2 � b t;F
�
:

Proof. Fix anyu 2 W , and for eacht, de�ne � 0
t +1 = 1

�

P t
s=1 � s so that� (� 0

t +1 � � 0
t ) = � t . Since the AdaHedgeD with

variable delays regularization sequence(� t )t � 1 is non-decreasing,last(T) � T , and hence� T � � 0
T +1 , Thm. 14 gives the

regret bound

RegretT (u) � � T  (u) +
P T

t =1 � t � � T  (u) + �� 0
T +1 � ( (u) + � )� 0

T +1

and the proof of Thm. 14 gives the upper estimate (5):

� t � min
�

b t;F

� t
; at;F

�
for all t 2 [T]: (16)

Hence, it remains to bound� 0
T +1 . We have

�� 0
T +1

2 =
P T

t =1 � (� 0
t +1

2 � � 0
t
2) =

P T
t =1

�
� (� 0

t +1 � � 0
t )

2 + 2 � (� 0
t +1 � � 0

t )�
0
t

�

=
P T

t =1

�
� 2

t =� + 2 � t � 0
t

�
by the de�nition of � 0

t +1

=
P T

t =1

�
� 2

t =� + 2 � t � t + 2 � t (� 0
t � � t )

�

�
P T

t =1

�
� 2

t =� + 2 � t � t + 2 � t maxt 2 [T ](� 0
t � � t )

�

=
P T

t =1

�
� 2

t =� + 2 � t � t
�

+ 2 �� 0
T +1 maxt 2 [T ](� 0

t � � t )

=
P T

t =1

�
� 2

t =� + 2 � t � t
�

+ 2 � 0
T +1 maxt 2 [T ] � last( t +1)+1: t

�
P T

t =1

�
a2

t;F =� + 2b t;F
�

+ 2 � 0
T +1 maxt 2 [T ] alast( t +1)+1: t;F by (16).

Solving the above quadratic inequality for� 0
T +1 and applying the triangle inequality, we �nd

�� 0
T +1 � maxt 2 [T ] alast( t +1)+1: t;F + 1

2

q
4(maxt 2 [T ] alast( t +1)+1: t;F )2 + 4

P T
t =1 a2

t;F + 2 � b t;F

� 2 maxt 2 [T ] alast( t +1)+1: t;F +
q P T

t =1 a2
t;F + 2 � b t;F :
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